
Visual Odometry for Vehicle
Navigation

Indian Institute of Technology, Kanpur

Undergraduate Course Project

Siddharth Tanwar(13699)

Mentor - Prof. Gaurav Pandey

Abstract

Following is the documentation of visual odometry to estimate motion of a monoc-
ular camera. Camera information is used to predict the motion of car without any
prior knowledge of surrounding and other sensor data. Harris corner Detection fol-
lowed by feature matching and geometry estimation using 5-Point Nister Algorithm
and RANSAC for outlier rejection is employed for trajectory estimation. The data ob-
tained is further fused with IMU data to improve results. Implementation is tested on
Ford Campus Vision and Lidar dataset. The implementation is in C++ using Opencv
library and works in real time.

Contents
1 Introduction 2

2 Motivation 2

3 Problem Formulation 2

4 Fundamentals 3
4.1 Camera Calibration . 3

5 Methodology 4
5.1 Feature Detection and Matching . 5
5.2 Motion Estimation . 5

5.2.1 Epipolar Geometry . 5
5.2.2 Essential matrix computation . 7
5.2.3 Trajectory Estimation . 8

5.3 Sensory fusion . 9
5.3.1 Implementation . 10

6 Experiments and Results 10
6.1 Dataset . 10
6.2 Experimental Setup . 10
6.3 Results . 11

7 Discussion 12

8 Conclusions and Future work 12

9 Acknowledgement 12

1

1 Introduction
Visual Odometry is the process of estimating the vehicle’s trajectory using a single or mul-
tiple camera rigidly attached to the vehicle. Similar to wheel odometry, visual odometry
incrementally estimates the position of the vehicle without taking into account of the past
inputs. In Monocular Visual Odometry, the path obtained is a scaled version of the ground
truth. Visual Odometry was used by NASA in space rovers.

2 Motivation
In self driving car, the challenge is to solve the problem of braking, steering and accel-
erating which are done automatically without driver attention. All of the three paradigms
require correct absolute path prediction. Other techniques which can be employed for same
task are :

• Wheel odometry - It has slipping problem in uneven terrain

• Global Positioning System(GPS) - It is erroneous and not always available

• Inertial Measurement Unit(IMU) - I.M.U’s which generate accurate path are gener-
ally too costly. There are some I.M.U’s which are available at comparatively moder-
ate cost but the path generated by them is often erroneous.

Figure 1: Normal I.M.U. and high cost I.M.U.

Visual odometry promises appropriate results in almost all kind of environments with rela-
tively low cost apparatus(cheap sensors in comparison to other sensors). This has resulted
in increasing focus of research in the area. V.O works correctly when we have sufficient
illumination and enough number of interesting points (features) in the frames. Also the
consecutive frames should have overlap of common features, which enables us to track
those features. The aim of this undergraduate project is to solve the problem of predicting
trajectory in self driving car using visual inputs alone in for monocular system.

3 Problem Formulation
The camera is mounted on the moving car and takes images with certain fixed frames
per second to have sufficient overlap of scenes in two consecutive frames. Let the set
of images be I0, I1,In. The aim is to estimate the transformation matrices relating

2

the consecutive camera poses which will be utilised to estimate the trajectory of the car.
Without loss of generality we can assume that camera co-ordinates is same as vehicle’s co-
ordinate frame except for some translation. Let’s denote the camera pose as C0,C1,Cn.
The two consecutive camera poses are related as

Cn =Cn−1Tn

where

Tk =

(
Rk,k−1 tk,k−1

0 1

)
is the transformation matrix consisting of rotation matrix Rk,k−1 and translation vector tk,k−1
between instants k and k-1. C0 is the initial camera pose . If we are able to find T1, ..Tn
then any camera pose Cn can be computed by concatenating C0,T1,T2, ...Tn and thus we can
find the trajectory by finding all the camera poses. We find some keypoints(discussed later)
pi

k and pi
k−1 and utilize those to find transformation matrix Tk. Tk is found by minimizing

the L2 norm between the 2D feature sets pi
k and pi

k−1 and solve the following objective
function [8]

Tk = argmin
Tk

∑
i
||pi

k−Tk pk−1i|| (1)

4 Fundamentals
In order to arrive at the correct transformation matrices we use the perspective camera
model to map 3d points in universe to 2d points in camera pixels.

Figure 2: Image Projection Model

src : https://www.ics.uci.edu/ majumder/vispercep/cameracalib.pdf

4.1 Camera Calibration
Figure 2 shows the pinhole model of a camera. O is called the center of projection of
camera and the image plane is always at a distance of f (focal length) from O. A point in

3

3D P(X,Y,Z) (in camera’s frame) is viewed in image plane as Pc(u,v) (here we assume that
image plane origin (O

′
) is the point(α) where principal axis intersects image plane). By the

property of similar triangles,

f
Z
=

u
X

=
v
Y

u =
f X
Z

, v =
fY
Z

The above equations can be represented in homogeneous coordinates as

Ph =

 u
′

v
′

w

=

 f 0 0
0 f 0
0 0 1

 X
Y
Z

= KP

Pc =

(
u
v

)
=

(
u
′

w
v
′

w

)
If the origin(O

′
) of image plane does not coincide with α then we need to adjust Pc

accordingly by

u =
f X
Z

+ cx, v =
fY
Z

+ cy

where (cx,cy) is the position of α (called principal point) from O
′
. notice that Pc we derived

until now is not exactly the point in the image because u v are in inches (or MKS system).
So we need to correct that factor by multiplying mx my which are pixels/inch in x and y
directions respectively. So the overall rectified equations now looks like

u = mx
f X
Z

+mxcx, v = my
fY
Z

+mycy

In matrix form it is represented as

Ph =

 u
′

v
′

w

=

 mx f 0 mxcx
0 my f mycy
0 0 1

 X
Y
Z

= KP

This K matrix is called intrinsic camera calibration matrix. If the camera’s coordinate
frame is not aligned with vehicles coordinate frame then we have to perform rotation and
translation to align the above two frames. These matrices are called extrinsic calibration
matrix. In this project, we are not making use of the extrinsic calibration matrix as there
is only translation vector required to align camera frame with vehicle frame which donot
effect our generated path.

5 Methodology
We were provided images which are adjusted for distortion. A brief outline of the algorithm
followed is :

• Feature detection- Detect a considerable amount of features in the images. If num-
ber of features fall below a certain threshold a redetection is triggered.

• Feature tracking- Track the detected features in consecutive images It and It−1.

4

• Epipolar Geometry- With the pairs of tracked points obtained from above step, use
Nister’s five point algorithm with RANSAC to find essential matrix.

• Estimating Motion Trajectory- Extract rotation matrix and translation vector from
the essential matrix and concatenate it to find the trajectory of motion.

• Fusion with other sensors- Fuse the obtained data with other sensors working in
parallel to improve the accuracy of results and resolve scale ambiguity.

5.1 Feature Detection and Matching
Instead of tracking all of the pixels we rather focus on features which are interesting parts
of image that differ from immediate neighbourhood. To employ the repeatability of fea-
tures we need robustness of the features. I employed Harris Corner Detection [3] because
corners are relatively invariant to change of view and also given that we are using video
feed consecutive images don’t show much variance in view.
In each frame we detect Harris Corner Points. Harris corner points essentially represent
textureness maxima, where textureness is measured using the shape of the autocorrelation
function around a point. The autocorrelation function is defined by comparing the pixel val-
ues in a slightly shifted window to the pixel values of the original centered window. Instead
of the conventional approach where all the points above a particular threshold are treated
as corner points, we focus on windows throughout the image wherein the local maxima in
a n∗n (n is user defined) is treated as an interest point.
We consider matching between two consecutive images only due to ease of implementa-
tion. While matching instead of comparing each point in the first image to every other
point on the second image, we choose only the points within a certain disparity (30 percent
of the image size in our case) for matching. The disparity depends on the surroundings.
Among these points the one that has the maximum cross correlation is considered a match
for image. Similar analysis is done the other way round. True match is only considered
when mutual consistency condition holds ie. the points give the same result both ways [6].

5.2 Motion Estimation
The goal of visual odometry is to estimate motion which can be found from the transforma-
tion matrix by solving the first equation.The problem is a hard problem since the objective
variable is a matrix . But a careful observation shows that instead of searching for a feature
in whole of the next image we can constrain our search in a line called epipolar line. This
is derived from epipolar constrain discussed in next section.

5.2.1 Epipolar Geometry

It uses the coplanarity condition of 3d universe point,their corresponding image point and
Camera Centers. Let us denote this plane as π . Baseline is the line joining camera centers.
The point where baseline intersects image plane is termed as epipole. Epipolar line is
the intersection of the image plane with pi. Thus instead of searching for image features
correspondence in whole of the image it searches in the epipolar line corresponding to
feature [1].

5

Figure 3: Epipolar Geometry (src : [1])

If we have calibrated observation,then in the figure above ,x ,x’ are perpendicular to
(x× t).Using rigid motion we can write

x′ = R(x− t) (2)

Using co-planarity condition we can write

(x− t)T (x× t) = 0 (3)

Combining equation 6 and 7 we get

x′T R(t× x) = 0 (4)

To represent cross-product in matrix form, (t× x) is represented as [tx]x where

[tx] =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

Therefore
x′T R(t× x) = 0 (6)

x′T Ex = 0 (7)

Where E =R[tx] is called essential matrix.

6

5.2.2 Essential matrix computation

As discussed above once we have x and x
′
, we can calculate essential Matrix E which sat-

isfies equation(11). An essential matrix can be computed using Nister’s 5 point algorithm.
Equation (11) can be re-written as:

x̃T Ẽ = 0 (8)

where
x̃ = [x1x

′
1 x2x

′
1 x3x

′
1 x1x

′
2 x2x

′
2 x3x

′
2 x1x

′
3 x2x

′
3 x3x

′
3]

T (9)

Ẽ = [E11 E12 E13 E21 E22 E23 E31 E32 E33] (10)

As there are five unknowns in E matrix (3 angles and 2 translation elements), we stack
five such x̃ points and form a 5× 9 matrix (say X̃). Nister[5] proposed a mathematical
solution for the equation

X̃T Ẽ = 0 (11)

which gives the solution matrix E. It requires minimal 5 points which is better than previ-
ous 8 point algorithm. It involves calculating coefficients and finding roots of 10th order
polynomials. But from feature tracking we have so many pairs of points (x and x

′
) which

may also contain some outliers (due to least squares solution described above). So, we
need to choose a set of 5 pairs from them. This selection is done using RANSAC.

• RANSAC : Feature correspondences using KLT tracker are often erroneous and there
can be outliers. Least squares fitting uses all of the data and can be influenced by
outliers. In order to have better feature correspondence, we uses iterative Random
Sample Consensus, abbreviated as RANSAC [2], to remove outliers. At each itera-
tion RANSAC uniformly selects a subset of data samples and then Essential matrix
is computed. It checks if this essential matrix satisfies the equation (15) for all point
pairs. The pairs which satisfies equation(15) are called inliers. RANSAC terminates
if the count of the inliers is higher than specified amount by user. If the number is
satisfied then it returns this matrix as final Essential matrix, otherwise it searches for
points once again until it reaches maximum number of loops specified by the user.

Figure 4: RANSAC Model

src http://i.stack.imgur.com/umP7k.png

7

5.2.3 Trajectory Estimation

At first rotation matrix and translation vector is estimated from the essential matrix. R and t
can be obtained from the properties of essential matrix. The Singular Value Decomposition
of E is

E =
(

UΣV T)
where U and V are 3 x 3 orthogonal matrices and

Σ =

 1 0 0
0 1 0
0 0 0

Let us define

W =

 0 −1 0
1 0 0
0 0 1

Using skew-symmetric and orthogonal properties of tx and R, there are two possible values
of R as R1 =UWVT and R2 =UWTV T . Also translation vector can either be t or -t, where
[tx]=UWΣUT . Thus there are four combination for rotation and translation as depicted by
the figure below

Figure 5: Four Solutions

src: http://isit.u-clermont1.fr/ ab/Classes/DIKU-3DCV2/Handouts/Lecture16.pdf

The t and -t swaps the position of the cameras. R1 and R2 makes a rotation of pi around
the baseline. Therefore only one solution is feasible which is obtained via triangulation of a
point and choosing the solution where the point is in front of both cameras. This condition

8

is called cheirality constraint [4]. After estimating R and t, the trajectory is obtained by the
equation:

tnew = told + scale.Rnewt
Rnew = R.Rold

• Scale Ambiguity There are multiple solutions for t as many possible decomposition
of E and consecutively different set of U and Σ. Therefore scale ambiguity remains
problem for a monocular system. We can use I.M.U. sensor data to resolve the prob-
lem.

5.3 Sensory fusion
The data obtained from Visual Odometry was fused with data obtained from an IMU work-
ing in parallel but at a different rate than the VO data. Attempts were made to do so for two
major purposes : to resolve scale ambiguity, to obtain more accurate results. An extended
kalman filter was implemented to fuse the IMU and VO data. The filter assumed a constant
velocity model and since the control signals were not known, they were assumed to be 0
and the following implementation followed.
The accelerations from the IMU were integrated prior to the Kalman filter to obtain the rel-
ative pose of the car whose 2D coordinates (x,y) were used in the Kalman filter. The path
obtained from the VO is origin shifted, rotated and scaled when compared to that obtained
from the IMU. EKF algorithm as follows :

Prediction Stage

Xt = g(Xt−1,ut)

Pt = GtPt−1GT
t +Q

Update Stage

Kt = PtHT
t (HtPtHT

t +R)−1

Xt = Xt +Kt(zt−h(Xt))

Pt = (I−KtHt)Pt

System Model

X =

x
y
ẋ
ẏ
λx
λy
bx
by
θ

z =

ximu
yimu
xvo
yvo

9

g(Xt) =

xt + ẋt ·dt
yt + ẏt ·dt

ẋt
ẏt
λxt

λyt

bxt

byt

θt

h(Xt) =

xt
yt

λxt (xtcos(θt)− ytsin(θt)+bxt

λyt (xtsin(θt)+ ytcos(θt)+byt

In the above model X is the estimated state, g() is the system model, h() is the sensor
model, z is the sensor readings, G and H are the jacobian matrices of g and h respectively,
P is the prediction matrix (represents the variance in the estimated state), Q is the system
noise variance matrix and R is the sensor noise. K is referred to as the gain matrix.
(x,y,θ) is the pose of the car in 2D coordinates, (ẋ, ẏ) is the velocity, (λx,λy) are the relative
scalings in x and y direction respectively and (bx,by) are the origin shifting biases in the
two directions.

5.3.1 Implementation

Since the data is flowing from the two sensors at a different rate, a method to deal with
this lack of synchronicity is important. The rate of incoming data from IMU is much faster
than the camera and hence between two camera frames several IMU readings are obtained.
So the implementation of our Kalman filter works at two levels. In the inner loop the
states are predicted and updated based on solely the IMU data. As and when an image is
encountered, the outer loop incorporates this data as well in the prediction and updation
stages, thus combining the two sensor data.

6 Experiments and Results

6.1 Dataset
We are training our algorithm on images obtained from Ford Campus Vision and LIDAR
Dataset [7] which were taken in an urban environment. The dataset was collected by an
autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck. The
images were captured at the rate of 8fps so that we have sufficient overlap over images.
The camera was mounted laterally on the car to get a wider environmental view.

6.2 Experimental Setup
The images obtained were adjusted for distortion. The images had a part of vehicle which
resulted in considerable feature points detected on that part of vehicle. So we cropped the
image to remove the unnecessary parts to ensure correct transformation matrix. This crop-
ping doesn’t effect the focal parameters but the principal point should be translated by the
amount of cropping done.
As explained above, the images obtained were rotated 90◦ anticlockwise from actual straight
view.(sample image to be attached). Since the axis of the vehicle doesn’t align with the ro-
tated camera we rotated the given image to align with the vehicle’s axis. This resulted in

10

changed intrinsic parameters which were computed by the following equations: If h and w
are height and width of the images then for the rotated images principal point cx,cy for new
rotated images are given by

xnew = h− yold

ynew = xold

6.3 Results
The ground truth for the dataset is:

Figure 6: Ground truth of the trajectory

Figure 7: Estimated trajectory of a small portion of the path

11

Figure 8: Sampled points and their matches between two consecutive frames

7 Discussion
We implemented the monocular visual odometry on Ford Campus Vision and LIDAR
Dataset. We observed that when vehicle moves straight, our program generates straight
path but it is tilted as shown above. This is due to the fact that we are calculating trans-
formations relatively in visual odometry.This can be rectified using information from IMU
sensors(not necessarily costly) or LIDAR sensors. There is also a slight error in path predic-
tion due to incorrect scale. This can be also be solved by IMU data or Bundle Adjustment.
Kalman filter didn’t work as per expectation and further work is needed on it.

8 Conclusions and Future work
• Resolving Scale Ambiguity:We hope to resolve the scale ambiguity and tilt in the

path using . We are trying to implement kalman filter which also takes other sensor
data apart from camera images (I.M.U.) in our case.

• Another way of solving the scale ambiguity is to use Bundle Adjustment(BA) which
finds scale by triangulating 3D points using previous frames and then re-projecting
the points back to image to find scale factor for current timestamp. We would like to
use this to resolve scale ambiguity as it helps in reducing the use of IMU’s.

9 Acknowledgement
I thank Prof. Gaurav Pandey, Dept. of Electrical Engineering for his valuable support
throughout the project guiding me from time to time and looking into the project when it
was needed. I also thank OpenCV community for their user friendly libraries.

12

References
[1] Epipolar Geometry. http://www.cs.cmu.edu/~16385/lectures/Lecture18.

pdf.

[2] RANSAC Tutorial. http://image.ing.bth.se/ipl-bth/siamak.khatibi/

AIPBTH13LP2/lectures/RANSAC-tutorial.pdf.

[3] HARRIS, C., STEPHENS, AND M. A combined corner and edge detector proc. fourth
alvey vision conference. pp. 147–151.

[4] LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
journal of computer vision 60, 2 (2004), 91–110.

[5] NISTÉR, D. An efficient solution to the five-point relative pose problem. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 26, 6 (2004), 756–770.

[6] NISTER, D., NARODITSKY, O., AND BERGEN, J. Visual odometry for ground vehicle
applications. Journal of Field Robotics 23, 1 (2006).

[7] PANDEY, G., MCBRIDE, J. R., AND EUSTICE, R. M. Ford campus vision and lidar
data set. International Journal of Robotics Research 30, 13 (2011), 1543–1552.

[8] SCARAMUZZA, D., AND FRAUNDORFER, F. Visual odometry [tutorial]. Robotics &
Automation Magazine, IEEE 18, 4 (2011), 80–92.

13

http://www.cs.cmu.edu/~16385/lectures/Lecture18.pdf
http://www.cs.cmu.edu/~16385/lectures/Lecture18.pdf
http://image.ing.bth.se/ipl-bth/siamak.khatibi/AIPBTH13LP2/lectures/RANSAC-tutorial.pdf
http://image.ing.bth.se/ipl-bth/siamak.khatibi/AIPBTH13LP2/lectures/RANSAC-tutorial.pdf

	Introduction
	Motivation
	Problem Formulation
	Fundamentals
	Camera Calibration

	Methodology
	Feature Detection and Matching
	Motion Estimation
	Epipolar Geometry
	Essential matrix computation
	Trajectory Estimation

	Sensory fusion
	Implementation

	Experiments and Results
	Dataset
	Experimental Setup
	Results

	Discussion
	Conclusions and Future work
	Acknowledgement

