Project Report - EE698G
Marker based localization of a quadrotor

Akshat Agarwal! and Siddharth Tanwar?

I. OBJECTIVE

To implement a high level control pipeline on a
quadrotor which can autonomously takeoff, track and
hover over a marker, and land on it with high precision.

II. MOTIVATION

With the recent proliferation of UAVs, there is an in-
creasing need for giving quadrotors the ability to deploy
themselves autonomously for extended periods of time. How-
ever, quads have very limited flight times due to high power
consumption and limitations in existing battery technology.
To be deployed over a large area/timeframe, they must be
able to land with high precision on landing spots (either pre-
decided or detected on-the-fly), and charge themselves. The
mechanical docking of the chargers would obviously require
very high precision in landing.

III. REVIEW OF THE REFERENCE PAPER

We followed a paper [1] published recently in the Inter-
national Conference for Robotics and Automation 2015 by
Yang et al, which uses SR-UKEF vision perception for precise
autonomous quadrotor landing in both indoor and outdoor
environments.

The paper targets landing a large quadrotor systems (
>1.5 kg) while achieving landing precision within 5 cen-
timeters. Such accuracy is required for autonomous long-
term deployment of quads, since they have limited flight time
and need to recharge after every 15-20 minutes, depending
on the payload. Autonomously charging requires them to
land on a specified location with such accuracy that allows
the mechanical docking of the charging points. Moreover,
landing on the ground is made difficult due to the ground
effect [2], which is mitigated by using a small platform above
the ground.

The system proposed by the authors uses one downward
looking camera to detect the landing pad, and an optical
flow sensor for measuring the speed of quadrotor relative
to the ground. It also uses an IMU and GPS provided
by the drone manufacturers (DJI). The quadrotor attitude
control algorithm runs on the High Level Processor of the
drone itself, processing IMU, GPS and optical flow sensor

*We would like to thank Prof. Gaurav Pandey for providing us the
opportunity to do this project

1Akshat Agarwal is an undergraduate student in the Department
of Electrical Engineering, Indian Institute of Technology Kanpur
agarwalaks30@gmail.com

2Siddharth Tanwar is an undergraduate student in the Depart-
ment of Electrical Engineering, Indian Institute of Technology Kanpur
siddharthtanwar2996@gmail.com

velocity data. The on-board computer handles the data from
camera and executes the landing control algorithm, including
SRUKEF position estimation [3] and PID control.

A. Landing Pad Position Estimation

The landing pad needs to be detected first and then the
relative position between the UAV and landing pad needs to
be calculated.

« Markers are generated and detected using the ArUco
[4] marker library. The detection and identification
steps uses an image processing pipeline, and gives cor-
ner points of the detected marker as an output. Since the
real size of marker is known, a correspondence between
image points and real points is easily established and
used to form a PnP problem, from which R and T are
obtained.

o Rotation Compensation: The IMU has a dedicated
gyroscope and hence measures rotation much more
accurately than the PnP solver. Within the PnP solver,
yaw angle is much more stable than pitch and roll, both
of which are afflicted with noise. So the authors use
IMU to compensate PnP rotation. Rotation compensa-
tion works by decomposing the rotation into a torsion
and a tilt component, where the torsion only involves
rotation around yaw axis, while tilt contains rotation
around pitch and roll axes. So the tilt component of
IMU is used to compensate the tilt component of PnP,
and is multiplied with the torsion component of PnP
rotation, resulting in a more precise rotation measure.

o SRUKF position estimation: Kalman filtering is used
to reduce noise in yaw and translation estimates.
SRUKEF [3] has the advantage of a higher output rate
over the UKF [5], while again avoiding the need to
compute a Jacobian. The state consists of translation
component T, rotation (quaternion) R, velocity of
quadrotor v* and the angular velocity of quadrotor w?®.
The process model is shown in Fig. 1. The symbol X
means quaternion multiplication and a!_; is obtained
from IMU measurement. The measurement model is
shown in Fig. 2 where 7% and ¢'* are obtained from
PnP problem after rotation compensation. Linear accel-
eration and angular velocity is obtained from IMU. For
velocity, the authors use two methods: 1) optical flow
sensor, and 2) differentiate 7**. While 2) is sensitive to
noise, 1) may be incorrect if there are moving objects
in the quad’s field of view.

th th b
z; = qtz' _ |4 i1 x ‘I(ﬁ;’ i—1At)
'ub,i v —I;r_.r, 1At
' Wi
Fig. 1. Process Model
Ttb
tb
1 b b
Yi = 1 t t e
o w1V + a"At) + we—77—*]
wb
Fig. 2. Measurement Model

B. Landing Process

Landing involves position based visual servoing, with
the landing sequence being: 1) Detect marker, 2) Obtain
estimated position and orientation w.r.t. landing pad by
SRUKEF, 3) Rotate to target yaw angle 0, 4) Control to target
position (0,0,50) that is eliminate xy-plane displacements,
and 5) Control to target speed (0,0,-30) expressed in body
frame b.

C. Results

With IMU data at 100Hz, marker detection at SOHz,
the controller generates output with frequency 50Hz. The
system lands with a mean error of 3.1cm indoors, and 2.9cm
outdoors.

IV. OUR METHODOLOGY

We adapted the paper’s methodology according to the
resources available to us, both in terms of hardware and the
algorithm used.

A. Hardware Setup

We used the Nayan quadrotor shown in Fig. 3, developed
by AUS with an Odroid XU-4 on-board computer running
Lubuntu 14.04. The quadrotor has a twin ARM cortex M4
processor with a Real-Time OS for the flight controller (High
Level + Low Level Processor). It has the following sensors
on it:

Fig. 3.

Nayan Quadrotor

Motors & ESCs| | Camera 8{,‘1’1‘:33
T 1] | | uss | wiFt
Flight Controller [, S¢ial Odroid XU

IMU & Gyro vl
-oTuse
_= i power
PX4Flow |
Optical Flow Robot Frame | Battery

Fig. 4. Hardware architecture

Fig. 5. Our testbed consisting of the Pixhawk flight controller, the
mvBluefox camera and PX4Flow sensor

1) Monocular Camera: The mvBluefox USB 2.0 gray
scale camera is installed facing downward. It has a
maximum frame rate of 90Hz, but we used it at 60Hz
since that was good enough for our purpose. Although
it has adjustable gain and exposure, it performs well
only in well illuminated environments, restricting our
test times. It has a pre-built driver in ROS.

2) PX4Flow: This sensor has an optical flow sensor which
gives x-,y- velocities at 400Hz, and a sonar which
gives distance to ground. It is supposed to work in
both indoor and outdoor environments, but gives good
quality only in well lit ones. This too has a driver in
ROS.

3) IMU: Provides linear acceleration using accelerometers
(-8G to +8G) and angular rates using gyroscopes
(max 2000deg/sec) to flight controller. Has an absolute
reference frame towards true North, and is used to
estimate orientation of the quad.

The hardware architecture is shown in Fig. 4. The Nayan
quadrotor available to us gave erroneous values of IMU
rotation, due to which we were unable to implement our
code on that. Instead, we used a small test-bed consisting
of the sensors listed above to record data and then test our
localization algorithm on that. This test-bed can be seen in
Fig. 5

PX4 Ground
Distance

Translation
from ArUco

KF Update]——[State output]

IMU Linear .
Acceleration } [PX4 Velocity I

KF Predict

\\

Rotation from
MU

Rotation Compensation
(for transformation to
world frame)

Rotation from
ArUCo

Fig. 6. Data flow through our pipeline: Blue represents input from sensor,
gray represents processing step, and green represents output

B. Software

We used the Robot Operating System (ROS) [6] since it
has pre-built packages for the sensors and also provides a
great robust interface for inter-process communication. We
have also used the ArUco marker library provided by Pal
Robotics to detect marker and localize the camera’s position
with respect to the marker.

Due to difficulties in getting the SRUKF to converge
properly, we used a simple Kalman Filter [7] after assuming
a linear system model, where our state is x = [z y z 2’ 3/ 2/]
where the primed coordinates indicate velocity. The motion
model is assumed to be linear, taking action to be the accel-
eration derived from the quadrotor, and position is updated
simply by taking x; = x;—1 + }_,At. The measurement
model accepts inputs from ArUco and updates the translation
components x,y and z. The optical flow data from PX4Flow
sensor is used to update the ' and y’ components. The sonar
data is used to update the z component of state. We use
rotation compensation to compensate PnP rotation with IMU
rotation, and use the compensated value as the transformation
to be applied to bring the sensor values from quadrotor’s
body frame to the Earth frame. Fig. 6 Shows the data flow
in our algorithm.

V. RESULTS

The ArUco marker localization can be seen in Fig. 7
where we see two markers being simultaneously tracked and
localized by the test-bed. The result of localization of z-
coordinate of the drone from our control pipeline can be
seen in Fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

In this project, we built an architecture for implementing
SRUKF, UKF and KF on the quadrotor. We have tracked
pose of the quadrotor using the ArUco markers and using
variants of the Kalman Filter. We conclude that sonar data is
often unreliable and produces impulse noises, as can be seen
in Fig. 8. Our Kalman Filter is enough to handle this and
produces very good results. We also observe that camera data
is reliable if and only if the ArUco marker stays completely
in the camera’s field of view. We also see that rotation
compensation helps in producing a much better estimate of

Fig. 7.

ArUco markers being localized

the quadrotor body to earth transformation, leading to greater
localization precision.

Future work includes testing our localization on the actual
quadrotor, and tune the control system to make it respond
better to our code.

REFERENCES

[1] S. Yang, J. Ying, Y. Lu, and Z. Li, “Precise quadrotor autonomous
landing with srukf vision perception,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2015, pp.
2196-2201.

[2] G. J. Leishman, Principles of helicopter aerodynamics with CD extra.
Cambridge university press, 2006.

[3] R. Van Der Merwe and E. A. Wan, “The square-root unscented
kalman filter for state and parameter-estimation,” in Acoustics, Speech,
and Signal Processing, 2001. Proceedings.(ICASSP’01). 200! IEEE
International Conference on, vol. 6. 1EEE, 2001, pp. 3461-3464.

[4] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and
M. Marin-Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognition,
vol. 47, no. 6, pp. 2280 - 2292, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320314000235

[5] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter
for nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000. Ieee, 2000, pp. 153-158.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[71 R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35-45,
1960.

fgnd_dist_ef/data
Iposiz

position/z

Fig. 8. Shows the result of z-coordinate localization using our Kalman Filter. The red line is z-coordinate from ArUco localization, dark blue line is from
SONAR data, and the light blue line is what is produced after Kalman Filtering

